Enabling IPv6 on your mail servers? Don’t forget SPF
Our network has supported IPv6 for a while, but recently we’ve been making a concerted effort to enable IPv6 on more of our servers. What we’ve learned (mostly the hard way) is that the challenge in doing this is not so much in enabling specific services, such as making your webserver speak IPv6, but in the less obvious side effects of bringing up an IPv6 address on the server in question. Once you do this, the server will start making outgoing connections over IPv6 where possible, and that’s when you find out all the places that you’ve got IP-based access controls squirreled away.
One that caught us out recently when we brought up IPv6 addresses on our mail servers was an SPF record that listed our outgoing servers by their IP (v4) addresses. In hindsight, including IP addresses in an SPF record was never a great idea. It would be much better to use the “mx” or “a” SPF terms, referring to mail servers by name rather than address.
To help others avoid making the same mistake, we’ve added SPF record checking to our IPv6 Health Check. The rules on this are necessarily a bit arbitrary: if you have an explicit reference to an IPv4 address, it expects you to have at least one reference to an IPv6 address. In addition, any time that you use an MX term, it expects that MX to have both IPv4 and IPv6 addresses.
For an example of this, compare the results for twitter.com with the results for google.com. We fail twitter.com because of the “mx:one.textdrive.com” term. There are other parts of Twitter’s SPF that don’t appear to have IPv6 equivalents (e.g. “_netblocks.zdsys.com”) but there’s no easy way to determine which IPv6 address block corresponds to each IPv4 address block. Suggestions for better ways to categorise these test results gratefully received.