LINX now running at 2x10Gbps

November 29th, 2013 by

Today we’ve upgraded both of our connections to the London Internet Exchange (LINX) from 1Gbps to 10Gbps.

Over the past few weeks we’ve repeatedly broken the company bandwidth record. And since we’ve recently secured more peering agreements — including every major UK connectivity provider — a greater proportion of our traffic is now going out over LINX. So at peak times our bandwidth usage has been enough that in the unlikely event of a failure of one of the LINX LANs, we would have come close to running out of capacity on our other link. Clearly an upgrade was in order!

Our network engineers performed the upgrade this morning, with no disruption as traffic was automatically and transparently rerouted during the brief down time. After the upgrade, we have 10Gbps from our data centre in Telecity Sovereign House to LINX Juniper; and 10Gbps from our Harbour Exchange data centre to LINX Extreme.

In the event of the failure of either link or router, traffic will automatically reroute around our internal fibre ring to our other site and out to the peering exchange via our other connection. And, for the time being, we have plenty of capacity to spare.

Tricky debugging

November 12th, 2013 by

After cloning a server for a customer we noticed that something was a little bit odd:

# md5sum /etc/sudoers

worked fine but:

# sudo -l

responded with:

sudo: unable to stat /etc/sudoers: Permission denied

How odd we thought. More odd was:

# su - username
Cannot execute /bin/bash: Permission denied

A bit of time with Google and strace revealed that we’d managed to set the permissions on / wrongly:

drwx------  27 root root  4096 Jun  4 11:48 ..

rather than:

drwxr-xr-x  27 root root  4096 Jun  4 11:48 ..

What amazed us was not that the machine didn’t work properly but that we could log in at all.

If this is the sort of problem you’d be able to fix, you should look at our jobs page. If you’d like someone else to fix it for you then our Managed hosting is probably of a lot more interest.

Migrating the Science Media Centre

November 12th, 2013 by

Over the past week or so we’ve given the Science Media Centre a hand in moving their WordPress site into a virtual machine hosted by Mythic Beasts. They’re a charity who work with journalists, scientists and engineers to try and improve the quality of science reporting and removing the misleading rubbish that otherwise gets written. Mythic Beasts is a company founded by science graduates who are very easily angered by terrible science articles in the papers. We’re hoping the saving on destroyed laptops and monitors will easily cover all the management and consultancy services we’ve donated.

If we have fewer idiotic articles proving that Coffee cures cancer* and Coffee causes cancer* and rather more articles that our talented university friends pioneer new cancer treatments we’ll consider the time and effort we’ve put in to helping them well spent.


* Actual links removed in the name of good taste. Here’s something more interesting to read, and if you’re still curious, you can look up coffee in the index.

Rocket Science

November 5th, 2013 by

Today is Guy Fawkes Night, when traditionally in the UK we launch fireworks to commemorate not blowing up King James I, the House of Lords and a large chunk of central London. Most modern firework displays use rather less gunpowder than the original plot in 1605.

At Mythic Beasts we think with the advent of four hundred years additional technology we should be aiming a bit higher. That’s why instead of buying fireworks we’ve donated some hosting to Southampton University Spaceflight. Certainly I (Pete) was incredibly inspired as a child by space flight and I remember watching the first untethered spacewalk as a child which motivated me strongly to learn all about rockets and space ships and from there to reverse engineer 8 bit computer games ultimately leading to running a hosting company.

This is of course the second university space program we’re helping out with – some of the tracking for Cambridge University Spaceflight is also done on servers hosted with us.

IPv6, End users starting to care

September 17th, 2013 by

We’ve had an IPv6 aware network for quite some time, and we’ve been gradually rolling it out to our services with the aim of eventually having every service we offer fully available over IPv6 and IPv4. We host the Raspberry Pi website which has an IPv6 only internal network, IPv6 only virtual machines and IPv4 on the front end to help out those of you with the ‘legacy’ internet.

A quick skim over the logfiles suggests that about 96% of you still access the site through the legacy IPv4 network – about 4% of hosts are now connecting over IPv6 which is starting to become a non trivial fraction of the traffic. Of course this is much higher than typical sites, Raspberry Pi users are much more technically aware than the general population.

Yesterday we had our first real connectivity problem to investigate – an end user within Ja.net (the UK academic network) was unable to access files from the Raspberry Pi download server on about half of the occasions. Further investigation showed that they could access the load balancers in our Sovereign House site with connectivity via the London Internet Exchange Juniper LAN, but not the load balancers in our Harbour Exchange site with connectivity over the London Internet Exchange Extreme LAN.

When we started investigating we confirmed that it seemed to be a problem with the Extreme LAN, if we forced the connectivity via the Juniper LAN it worked from both sites, if we forced it via the Extreme LAN it failed from both sites. Odder and odder though, a packet dump on our LINX interface didn’t show us passing the packets on.

Our IPv4 peering worked fine, this was IPv6 specific.

We then started looking at the routing table on the router. Over IPv4 it looks like

131.111.0.0/16 via 195.66.236.15 dev eth0

and over IPv6 it looks like

2001:630::/32 via fe80::5e5e:abff:fe23:2fc2 dev eth0

That gives us the netblock, and the next hop to send the packet to.

So the next step is to check you can reach the gateway happily enough.

# ping 195.66.236.15
PING 195.66.236.15 (195.66.236.15) 56(84) bytes of data.
64 bytes from 195.66.236.15: icmp_seq=1 ttl=64 time=0.220 ms

and

# ping6 fe80::5e5e:abff:fe23:2fc2
connect: Invalid argument

Odd. Then I realised that fe80:: in IPv6 means a link local address – the address is specific to the network card so to ping it you have to specify the destination address and the network interface.

# ping6 fe80::5e5e:abff:fe23:2fc2 -I eth9
PING fe80::5e5e:abff:fe23:2fc2(fe80::5e5e:abff:fe23:2fc2) from fe80::21b:21ff:fe65:a4c5 eth9: 56 data bytes
64 bytes from fe80::5e5e:abff:fe23:2fc2: icmp_seq=1 ttl=64 time=0.451 ms

Then the penny dropped. The routing table has eth0 in it but we’re actually connected to eth9. Under IPv4 this is fine because the next-hop address is globally unique and only accessible over eth9 so we send the packets out of eth9 and they go to the correct destination. Under IPv6 it’s a link local address and therefore valid over any interface, so we obey the routing table and throw the packets out of eth0 whereupon they fall onto the floor because there’s no fibre connected.

Fixing the config to put the right interface description in made it all work, and our end user is happily able to access all the load balancers on all the v6 addresses in all of the buildings.

Obviously if you’re a Mythic Beasts customer and you don’t already have an IPv6 allocation for your real or virtual server, drop us an email and we’ll hand you your own address space to play with.

I do not accept your silly software license

September 9th, 2013 by

So our newest Mythic Beast started working for us today. The first task is to start installing your new laptop and reading and signing employment contracts. Today we had our newest employee fail at the first hurdle.

The laptop in question is a shiny Toshiba z930. This one came with Windows 8 and a fully charged battery. On first powering it on it comes up with the Windows 8 licence. This has a tickbox option for ‘I accept the license’ and a big button labelled ‘Accept’ to click on.

If you don’t tick the box, it tells you you have to. There’s no option to reject the license.

If you press the power button the laptop suspends itself. If you press and hold the power button the laptop still suspends itself. Ctrl-Alt-Delete doesn’t work. You can’t remove the battery as it’s built in. In frustration our newest employee suggested pouring his coffee over the damn thing to make it power cycle. This was a really stupid idea, not only does the laptop have a spill proof keyboard he’d also then have no coffee.

The best plan we could come up with was to wait for the batteries to run out which requires pressing a key about every five minutes to stop the thing suspending itself.

New DNS resolvers

August 28th, 2013 by

We’ve upgraded our DNS resolvers in our SOV and HEX data centres. New features include DNSSEC validation and IPv6.

The addresses are,

SOV : 2a00:1098:0:80:1000::12 / 93.93.128.2
HEX : 2a00:1098:0:82:1000::10 / 93.93.130.2

They’re now DNSSEC aware and validating resolvers. That means if a site has correctly configured DNSSEC and we receive an answer that fails the security check we will return no answer rather than an incorrect/forged one.

To demonstrate the difference,

a non dns sec validating resolver :
# dig +short sigfail.verteiltesysteme.net
134.91.78.139

a mythic beasts server using our resolvers
# dig +short sigfail.verteiltesysteme.net
<no answer>
#

and on the DNS server it logs an error,

debug.log:28-Aug-2013 15:44:57.565 dnssec: info: validating @0x7fba880b69e0: sigfail.verteiltesysteme.net A: no valid signature found

and correctly drops the reply.

Googles DNS servers on 8.8.8.8 work the same as ours so we’re fairly confident that there will be no compatibility issues.

Downstream ASN

August 12th, 2013 by

With a customer of ours we have set them up their own full BGP network, split across two of our London sites. With advice from us we have

  • Helped them join RIPE as an LIR
  • Helped them apply for an IPv6 /32 and an ASN
  • Set up a full BGP IPv6 only network
  • Helped them apply for a final /22 of IPv4 space
  • Configured this in the global routing table

They have the option to now cable or fibre direct to peering exchanges and other ISPs should they wish to do so on individual machines hosted within our rackspace. In the mean time they’re taking advantage of our co-location, out of band access to their routers via serial and our IPv4 and IPv6 transit.

Joining the London Internet Exchange

August 7th, 2013 by

We’ve now joined the London Internet Exchange and are present on both of their peering LANs for redundancy. We’re connected to the Juniper LAN in Sovereign House and the Extreme LAN in Harbour Exchange. We’re now connected to three peering exchanges – Edge-ix,LoNAP and LINX-juniper in Sovereign House, and two – LINX-extreme and LoNAP in Harbour Exchange.

You can see the current traffic over the LINX public exchanges here

which is best described as rather a lot. We’re in the process of setting up more direct peers in addition to the route servers which provided immediate peering with hundreds of ISPs and tens of thousands of routes. So many UK destinations are now a few hops shorter – which probably won’t be very noticeable – but we have improved redundancy and increased capacity.

Dark Fibre

August 5th, 2013 by

Over the last twelve months we’ve made a series of networking changes and completely failed to blog about them. Our first announcement is that we now have a dark fibre ring around our core London sites.

This isn’t actually true. We now have a lit fibre ring around our core London sites. It’s currently running at 10Gbps and connects all of our routers together. All our routers connect to the local networks at 10Gbps so our entire network core is now 10Gbps. We also have some direct customer connections who are using our fibre as a layer 2 interlink between Telecity Sovereign House, Telecity Meridian Gate and Telecity Habour Exchange 6/7. Our standard is to offer a pair of ports in each site on redundant switches (so 6 x 1Gbps ports) with unlimited traffic between them.

As a result of our upgrade we’re able to continue to offer free traffic between all London hosted servers irrespective of the building the machines are in or which customer owns them – we bill only for traffic that leaves our network. Upgrading to progressively higher bandwidths is now straightforward as we can add CWDM / DWDM as required to increment in multiples of 10Gbits, or to 40Gbits or multiples of 40Gbits.

For those of you that are interested, the fibre lengths are

  • MER <-> SOV : 1672ns (or 1122ft)
  • SOV <-> HEX : 6423ns (or 4310ft)
  • HEX <-> MER : 5456ns (or 3687ft)

and the latencies across the network from core router to core router (average over 10 pings) are

  • MER <-> SOV : 0.096ms
  • SOV <-> HEX : 0.082ms
  • HEX <-> MER : 0.076ms

and from customer machine in SOV to customer machine in HEX, passing through at least two routers – 0.5ms.